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A Multiscale Framework for Spatial Gamut Mapping

Ivar Farup, Carlo Gatta, and Alessandro Rizzi

Abstract—Image reproduction devices, such as displays or
printers, can reproduce only a limited set of colors, denoted the
color gamut. The gamut depends on both theoretical and technical
limitations. Reproduction device gamuts are significantly different
from acquisition device gamuts. These facts raise the problem of
reproducing similar color images across different devices. This is
well known as the gamut mapping problem. Gamut mapping algo-
rithms have been developed mainly using colorimetric pixel-wise
principles, without considering the spatial properties of the image.
The recently proposed multilevel gamut mapping approach takes
spatial properties into account and has been demonstrated to
outperform spatially invariant approaches. However, they have
some important drawbacks. To analyze these drawbacks, we build
a common framework that encompasses at least two important
previous multilevel gamut mapping algorithms. Then, when the
causes of the drawbacks are understood, we solve the typical
problem of possible hue shifts. Next, we design appropriate oper-
ators and functions to strongly reduce both haloing and possible
undesired over compression. We use challenging synthetic images,
as well as real photographs, to practically show that the improve-
ments give the expected results.

Index Terms—Gamut, gamut mapping, haloing, hue shift, mul-
tiscale, spatially variant.

1. INTRODUCTION

COLOR gamut is the set of all colors reproducible by a

given device or present in a given image. When repro-
ducing color images, we have to deal with the problem of in-
compatible color gamuts. Most probably, some colors present
in the given image are not within the color gamut of the re-
production medium. Thus, in order to be able to reproduce the
original image properly, we have to modify at least some of its
colors, i.e., perform gamut mapping (GM). Solving this problem
means searching for a tradeoff between accuracy and pleas-
antness of reproduction, cf., e.g., the rendering objectives ac-
cording to Hunt [1], or the rendering intents as defined by the
International Color Consortium (ICC) [2].

Eschbach [3] pointed out that the reproduction accuracy of an
image is not well defined, although the accuracy of the repro-
duction of a single color is. The very fact that colorimetrically
less accurate GM algorithms (GMAs) give visually more “accu-
rate” results [4], shows that other aspects than pure colorimetry
play important roles in image reproduction. Recently, Bala [5]
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emphasized the importance of other characteristics (which he
called dimensions) in color imaging, including the spatial, the
spectral, and the goniometric dimensions.

A recent trend in the GMA research is the use of spatial infor-
mation to compute the pixels’ color transformation from input
(image) to output (device) gamut. To achieve this, low-/high-
pass filtering or pyramidal decomposition is often used. Un-
fortunately, these techniques share the problem of generating
halos close to sharp boundaries, induced by the spatial compu-
tation itself. Another problem of such spatial GMAs is the hue
shift induced from compressing a group of pixels towards the
gray using the same vector in the chosen color space, thus er-
roneously mapping colors that don’t need to be changed. This
aspect is extensively discussed in the paper.

In this work, we present a framework for multiscale spatial
GMA. In developing a robust framework, we focused our at-
tention on two common problems: local hue shifts and haloing
artifacts. We show a general method to completely avoid hue
shift commonly caused by the multilevel method. For reducing
the haloing artifacts, we show a general approach that takes into
account the local properties of a pixel in the color space, thus en-
abling the proposed algorithm to avoid unwanted compressions
or expansions. The methods we present can easily be incorpo-
rated in other multilevel GMAs. They can also be extended by
the use of alternative color spaces or alternative scale-space rep-
resentations.

In Section II, the state of the art of spatial GM is summa-
rized and, in Section III, one possible formulation of a multi-
scale GMA based on the established ideas is presented. Then,
in Section IV, using the formulation of Section III, the advan-
tages and drawbacks of the simple multiscale GMA is discussed
in detail. Motivated by the analysis of the advantages and draw-
backs, we propose a new multiscale framework for spatial GM
in Section V. Section VI discusses some of the properties of the
proposed method, and results for real images are given in Sec-
tion VII. Finally, possible extensions of the method are elabo-
rated in Section VIII.

II. BACKGROUND AND STATE OF THE ART

Although GMAs has been an active field of research for a long
time, most of the activity has been related to simple mappings
in color space, not taking the spatial dimension into account
[4]. Much of the traditional research consists in proposing new
mappings in the CIELAB, CIECAMO02, or a related color space,
and then performing panel tests in order to evaluate the efficacy
of the proposed method.

The first attempt at a spatial GMA known to the authors, was
made by Meyer and Barth [6]. The first step of their algorithm
is lightness compression using low-pass filtering in the Fourier
spatial frequency domain. The dynamic range of the low-pass-
filtered image is then compressed to that of the reproduction
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medium and the high-pass-filtered image detail information is
added back to it.

Bala et al. [7], [8] introduced a two-level approach for spatial
GMAs related to the ideas of Meyer and Barth [6]. The image is
first gamut clipped, mapping out-of-gamut colors to the nearest
surface point of the same hue. Then, the difference between
the luminance of the original and the gamut-mapped image is
high-pass filtered and added to the gamut-mapped image, since
gamut clipping typically reduces the high-frequency content of
the image. Finally, the image is gamut clipped, mapping out-of-
gamut colors to the surface in a direction towards a neutral point
whose luminance is that of the cusp color [4]. Later, the method
was improved by applying different algorithms onto small and
large objects [9].

A multiscale spatial GMA was recently developed by Mo-
rovic and Wang [10]. The original image is decomposed into dif-
ferent spatial frequency bands, then lightness compression and
GM are applied to the lowest frequency image. Subsequently,
the next highest frequency band is added to the resulting image,
and the process iterated until all frequencies are treated. The ef-
fect is that the intra-image differences in the original image are
well maintained, although the overall color difference between
the original and the gamut-mapped image is greater than that
produced by conventional mappings in color space. Different
GM strategies can be applied for the different frequency bands,
and different low-pass filters can be selected. Thus, this is quite
a modular method.

A multiresolution GM strategy has been suggested by Mc-
Cann [11]. The algorithm is based upon the Retinex theory of
color vision [12], [13]. The algorithm works at different scales,
starting at the smallest subsampled image, and performs map-
ping in a way that tries to preserve ratios between the values of
neighboring pixels as much as possible.

Very recently, a new spatial gamut mapping algorithm was
proposed by Zolliker and Simon [14]. They followed the ap-
proach by Bala et al. [7], [8], but instead of Gaussian filtering,
they applied bilateral filtering [15], thus avoiding unwanted
haloing artifacts near sharp boundaries.

A completely different approach was taken by
Nakauchi et al. [16]. They defined GM as an optimization
problem of finding the image that is perceptually closest to the
original and has all pixels inside the gamut. The perceptual
difference was calculated by applying band-pass filters to
Fourier-transformed CIELAB images and then weighing them
according to the human contrast sensitivity function. Thus,
the best gamut-mapped image is the image having contrast
(according to their definition) as close as possible to the
original.

Recently, Kimmel et al. [17] presented a variational approach
to spatial gamut mapping. Their treatment starts with the pre-
sentation of a new fitness measure, closely related to a recent
measure proposed for Retinex [18]. It is shown that the gamut
mapping problem leads to a quadratic programming formula-
tion, guaranteed to have a unique solution if the gamut of the
target device is convex.

Apart from the works of Nakauchi et al. [16] and Kimmel et
al. [17], all of the above authors introduce spatial dependency
into the GMAs by using a multilevel approach, sometimes with
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only two levels. Subsampling as a way to obtain spatial pro-
cessing was proposed approximately simultaneously by Burt
[19] and Crowley [20]. They argued that human beings look at
things on many spatial scales at the same time, and that com-
puter algorithms should in some sense mimic this ability. They,
thus, introduced the concept of subsampled image pyramids,
also commonly referred to as MIP maps [21].

Another way to reach a multilevel approach is to introduce a
scale space [22]. In the scale-space formalism, the images are
not subsampled, but instead low-pass filtered in order to get ac-
cess to the spatial properties of the image at different scales. In
this paper, we refer to spatial GM based upon the pyramidal de-
composition as multiresolution GM, whereas spatial GM based
upon a scale-space representation will be referred to as multi-
scale GMAs. By multilevel GM we mean both.

III. MULTISCALE GMA

McCann has shown that changing all the colors of an image
in the same way is significantly less perceivable than changing
different colors in different ways [23]. This happens because
human visual system perceives spatial ratios more than absolute
values. For a spatial GMA context, this means that we should
treat large areas of the image as much as possible in the same
way in order to maintain the local relationships between colors.
For example, if a large area of the image is in average out of
gamut, the whole area should be gamut compressed in order to
preserve the local relationship among colors. However, single
pixels that are out of gamut could be treated independently, e.g.,
by gamut clipping.

Such behavior can be achieved by a multiscale approach:
First, the image is low-pass filtered using a large convo-
lution kernel. The low-pass-filtered image is then mapped
using a spatially invariant GMA. The difference between the
gamut-mapped low-pass-filtered image and the low-pass-fil-
tered image is then added back to the original image. Since the
resulting image can still have out-of-gamut pixels in higher fre-
quency bands, the process is iterated with decreasingly smaller
convolution kernels. The whole process can best be described
as an iterative multiscale GMA defined in terms of the spatial
invariant GMA and the low-pass filters chosen. Out-of-gamut
regions will be detected and mapped at the stage where the
whole region in average (in the sense of the chosen low-pass
filter) is out of gamut.

A. Unified Viewpoint for Existing Multiscale GMAs

In this section, we build a mathematical formulation of the
multiscale GMAs briefly introduced above. The aim of this sec-
tion is to develop a unified viewpoint for the analysis of the ad-
vantages and drawbacks of these approaches.

Formally, since we will need to treat image pixels as vectors
in the color space, we describe the image as a vector-valued
function of the position in the image, i.e., f : J — R3, where
J={0,...,20 — 1} x {0,...,% — 1} is the spatial image
domain, and R is the set of all real numbers, W and H being,
respectively, the width and the height of the image measured in
numbers of pixels. For simplicity, we group all possible images
into an abstract functional space F, f € F. We need one oper-
ator for the spatial invariant GMA, G : F — F, and a sequence
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of P € N low-pass filtering operators (Lp)ll;_ol, L, F—F,

N being the set of positive natural numbers.! The last low-pass
filter is taken to be the identity operator, Lp_; = I, in order to
make sure that the final step of the iterative procedure is a spa-
tially invariant GMA. In this way, all colors of the final image
are guaranteed to be inside the destination gamut.

Denoting by f; the original input image, the iterative
scheme can be summarized in the following equation for
pef0,....,P—1}

fp-l-l = fp + G(Lp(fp)) - Lp(fp)- (D

The final gamut-mapped image is fp. In order for this to be
meaningful, it is important that a sufficiently perceptually ho-
mogeneous color space is used.

It is easy to show that formula (1) incorporates the multiscale
GMAs proposed by Bala et al. [7], [8] (denoted with the apex
B) by rewriting it as follows, for the case of two levels:

7 =G (Lo (7)) + 15 — Lo () - ©)
~—_———
High—pass filter

We can also show that (1) is conceptually similar to the Mo-
rovic and Wang [10] approach (denoted with the apex M). In
our understanding, their GMA can be formulated as follows:

f11 =G (£7) + Ly (') - L, (£") &

~
Band—pass filter

and (1) can easily be rewritten as

for1=G(Lp(fp)) + £, — Ly(f,) . “)
—_———
High—pass filter

The formulations (3) and (4) are conceptually very similar, since
a high-pass filter combined with a low-pass filter in the next
stage of the iterative approach (4) is effectively a band-pass filter
of the input image (3).

The above formulation of multilevel GM turns into a conven-
tional spatially invariant GM in the trivial case where P = 1
and the low-pass filter is the identity operator, Ly = 1.

B. Specific Implementation of a Multiscale GMA

To obtain a specific implementation of (1), we have to choose
the operators G and (Lp)ll,):_g. We choose G = G, a pure
gamut clipping along straight lines towards the gamut center in
the CIELAB color space (CIE L*a*b* 1976 with D50 white
point [24]). To implement clipping, the gamut boundary is de-
termined using the modified convex hull method (with v =
0.2) suggested by Balasubramanian [25], since it was recently
demonstrated that this method is particularly well suited for this
purpose by Bakke et al. [26].

Since we will use a discrete scale variable, the low-pass fil-
tering is performed with Gaussian kernels [27]

1 2 2
omo? P (j 7 ) ' )
7r0p Up

I Actually, since G is spatially invariant, it is a pixelwise operation that could
be defined in terms of a function ¢ : R®* — R?, such that G(f)(x,y) =

g(f(l’7 y))

9o, (x,y) =
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We build a discrete scale space by halving the standard deviation
o, at each level (also referred to as an octave space) [27]. In
order to make sure that op_» = 1, we put o, = 2P=2-p hence

Ly(f) = gor-2-0p £ (6)

where * denotes convolution. The number P of low-pass filters
is chosen according to the size of the image. The size of the
largest scale convolution kernel is approximately 40 . Since the
largest convolution kernel should be significantly smaller than
the whole image but still larger than the important details in the
image, we choose to have

P = [log, (max(W, H))]| — 2. 7

where [] is the ceiling function. This choice of P is quite arbi-
trary; and it is not important for the performance of the resulting
algorithm. However, too large P values can lead to artifacts near
the edges of the resulting image. Since the size of the largest
convolution kernel is of the same order as the image size, the
filtering is performed in the Fourier domain for computational
efficiency.

The choice of Gaussian kernels for constructing the scale
space is not mandatory for the proposed framework. Alterna-
tives are discussed in Section VIII.

IV. MOTIVATION: ADVANTAGES AND DRAWBACKS
OF MULTILEVEL GMA

It is widely accepted that a multilevel GMA like the one de-
scribed above can perform better than or equal to spatially in-
variant GMAs [8], [10]. This is because multilevel GMASs can
take into account the spatial properties of the input image, and
not only the input gamut. Moreover, a multilevel approach can
treat the same color differently, according to frequency content.

In this section, we highlighted advantages and drawbacks of
multilevel GMAs. The main motivation of this paper is to iden-
tify drawbacks and propose general approaches and methods to
avoid or reduce these drawbacks. In the following sections, we
will discuss this using the multilevel GMA defined in the pre-
vious section.

A. Advantages

The main advantage of the multilevel approach over the spa-
tially invariant ones is a better rendering of details. In spatial
invariant GM, one has to deal with the trade off between gamut
clipping and gamut compression. If the image is gamut clipped,
it retains much of the contrast and vividness of the original, at
the cost of losing details. Gamut compression, on the contrary,
attenuates contrast and vividness while retaining details. Inter-
mediate solutions are of course possible, e.g., using knee or sig-
moidal compression functions [4]. With multilevel GMAs, it is
possible to obtain compression of image regions with many de-
tails while clipping regions of constant color, thus avoiding un-
necessary desaturation [8], [10].

B. Drawbacks

The multilevel algorithm smoothly compresses differently
sized areas of the image by compressing progressively from
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lower to higher spatial frequencies. The compression at a fixed
level (i.e., at a specific spatial frequency) is performed using a
spatially invariant GMA. The spatial computation is solely due
to the frequency filtering, and it’s not performed again when
gamut mapping a single pixel color. The compression at one
level is then propagated to upper levels towards higher spatial
frequencies [cf. (1)].

The mapping of a pixel color at a fixed level (except for the
last step) is, thus, the result of a weighted spatial average of
the image at the level below [cf. (6)]. Consequently, when the
gamut compression is propagated from the lower to the higher
levels, each individual pixel is gamut mapped as if its pixel
value equaled the (weighted) mean pixel value of its neighbor-
hood. At first sight, this seems reasonable and perfectly in accor-
dance with the multiscale theory of image processing. However,
treating every color as the mean of its neighborhood unfortu-
nately can generate different types of artifacts depending both
on the spatial and color distribution in the image. In particular,
outlier pixels involved in the averaging process can be subjected
to hue shift, hue change, and gamut expansion. Moreover, these
phenomena are strongly interrelated, and they can also cause
halos in the resulting gamut-mapped image.

1) Local Hue Shift, Hue Change and Gamut Expansion: To
illustrate how these three drawbacks are originated by the above
described method, we build a synthetic image (8 x 8 pixels),
and then show what can happen in a 2-D simplified case. First,
we color every pixel with (L*, a*, b*) = (66.5, 70, 20), then we
add Gaussian noise with a standard deviation of ¢ = 5 to the
(a*,b*) values. Then, we change three single pixels of the image
using the following values: (L*, a*,b*) = (66.5,5,45) (pixel
a), (L*,a*,b*) = (66.5,10,3) (pixel b), and (L*,a*,b*) =
(66.5, —25, —15) (pixel c¢). Since we only change three out of
the 64 pixels, the mean value of the image is still very close to
(66.5,70,20). Thus, in the multilevel framework, all pixels in the
image will be mapped as if their pixel value were (66.5,70,20).

Fig. 1 shows the cross section of the CIELAB color space
with L* = 66.5. The black curve is the boundary of the gamut
of the ISO uncoated ICC profile [28] (this is the destination
gamut for all gamut-mapped images presented in the paper). The
small dots are pixel colors, the big dot is the average color of
the image, the vector indicates the clipping of the average color
towards the gamut center.

Fig. 2 shows what happens when we, in accordance with the
multilevel method described above, apply the clipping vector of
the mean to all colors present in the image [see (1)]. This is what
typically happens at each level in the multilevel scheme. Most
of the pixels of the cloud do not move on constant hue lines
(that would be straight lines towards the origin). Even though
the induced hue shifts are small, it is not what is intended. If the
cloud represents noise, the noise will be more pronounced in
the gamut-mapped image since relative hue differences are in-
creased. A significantly larger hue shift effect can be noticed for
the color a: In this unfortunate case, the hue angle shift is about
32°. Another case is represented by the color b: the hue is com-
pletely changed as a consequence of crossing of the gray axis.
The case of color ¢ is symptomatic of an even bigger problem:
In-gamut colors can be mapped outside the gamut causing an
unwanted gamut expansion. This fact could erroneously be con-
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Fig. 1. First synthetic image viewed in the (a*, b*) plane of the CIELAB color
space for L* = 66.5. The small dots are the individual pixels, mainly forming
a cloud. The three pixels marked a, b, and ¢ are not a part of the cloud, as
discussed in the text. The big filled circle is the average color of all the pixels,
and the small filled circle on the boundary is the closest in-gamut color having
the same CIELAB hue (A, ) as the average color. The synthetic image is shown
in the lower right corner.
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Fig. 2. Result of applying the same color change to all pixels of the synthetic
image of Fig. 1. The synthetic image and the resulting gamut-mapped image are
shown in the lower right corner.

sidered a minor problem since a multilevel algorithm will take
care of this out-of-gamut pixel in a higher level. However, we
show in the next section that this can cause a strong haloing ef-
fect.

2) Haloing: The synthetic image of the previous section pro-
vides a clear example that the above described method changes
colors in a way that does not preserve local relationships (see,
e.g., pixel b with respect to cloud pixels). This implies that colors
are modified in a way that is not consistent with color appear-
ance prescriptions [11]. To understand how this erroneous map-
ping can generate haloing problems, we constructed a second
synthetic image (512 x 512 pixels) with challenging proper-
ties. The left part of Fig. 3 shows the synthetic image: it is com-
posed of several patches whose (L*, C,, hap) values are given
in Table L.

Between the patches, there are very sharp edges that can cause
haloing problems. The four small squares share the hue angle
with the saturated ones in which they are contained. The right
part of Fig. 3 shows the result of the standard multilevel GMA
[formula (1), seven scales] on the synthetic image. Fig. 4 shows
L* and h, values of a scan-line (the horizontal white line of
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Fig. 3. (Left) Second synthetic image with labels indicating the individual colors as listed in Table I, and (right) the result of gamut mapping using the multiscale

method (1) mapping to the ISO uncoated gamut.

TABLE I
LCh VALUES FOR THE SYNTHETIC IMAGE (LEFT PART OF FIG. 3)

Patch | L* Ch  ha
w 100 0 0
n 50 0 0
k 0 0 0
r | 40 100 7/5
g 60 100 4rw/5
b 10 100 37w/2
y | 90 100 72
ne | 50 10 x/5
ng 50 10 4xn/5
o | S0 10 3m/2
ny 50 10 =w/2

Fig. 3) of both the input and gamut-mapped synthetic image.
The dashed line is the input image and the solid line is the
gamut-mapped one. We plot L* and h,; values to show the
strength of halos both in L* and h,; channels to highlight that
the halo is colored. While halos are not heavy in the L* channel,
it is evident that there is a big hue shift (from pixel 0 to 128)
because this part of the input image is achromatic (for conve-
nience, we set hqp = 0 for C%, = 0) and the gamut-mapped
image has hqp ~ —140°. Around pixel 192 it is evident that the
hue change is Ahg, ~ 180°.

Even though these two images are built to be symptomatic
of different types of drawbacks (and would actually be better
treated with spatially invariant GM), they exaggerate problems
that can be encountered in normal images too. In the next section
we build a framework for multiscale spatial GM in which these
drawbacks can be removed or strongly attenuated.

V. FRAMEWORK FOR MULTISCALE GM

The framework we propose requires an important constraint
on the color space in which the gamut mapping is performed:
lines of constant hue must be straight lines towards the gray
axis of the color space, and the color space must be perceptually
homogeneous. A color space that fully accomplishes these two
constraints does not exist, and according to some researchers
it will also be impossible to construct such a space due to

100 T T T T T T

CIELAB L*

384 448

T

256 320

192

CIELAB hy,

256 320 384 448

Pixel no.

64 128

192 512

Fig. 4. Scan line plots for a horizontal line going through the center of the n,.
and 7, patches of the second synthetic image (left hand side of Fig. 3); (top) L*
and (bottom) h,,. The solid lines are the scan lines of the reproduced image,
and the dashed lines are the scan lines of the original image.

the intrinsic curvature of the color domain, see, e.g., [29]. A
well-known color space that approximates these constraints is
CIELAB; thus, we use it in this paper as a specific case. How-
ever, every color space that approximate these two constraints
can be used with the proposed framework.

To solve the above-mentioned drawbacks, mirroring the order
presented in Section IV, we now incrementally develop a new
framework. First, we force the mapping vectors to lie on con-
stant hue lines (Section V-A). Then, we compute the adequate
spatially variant compression by means of color properties in the
CIELAB color space (Section V-B), trying to preserve local re-
lationship between colors and then using color and spatial prop-
erties together to avoid unwanted compression (Section V-C). In
Section VIII-C, we discuss the treating of L*.

A. Mapping Vectors on Constant Hue Lines

It is evident that the drawbacks of simple multilevel tech-
niques presented in the previous section are induced by wrong
direction and magnitude of the mapping vector image Af, =
f,+1 —f, for some of the colors involved in the mapping process
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(cf. Fig. 2). To avoid this problem, we want the mapping vec-
tors of every color to lie on constant hue lines, i.e., straight
lines towards the gray axis. Thus, we force the direction of
the color change Af, to be towards a point on the gray axis,
while the magnitude of the compression is decided by the un-
derlying GMA. In general, the point on the gray axis can de-
pend on the image itself. Therefore, we introduce the projection
K : F — F such that K(f)(z,y) = k(f(x,y))er, where
k:R3 — R, and er, € R? is the unit vector along the gray axis
(e.g., the L* axis in CIELAB). Then, the following formula de-
scribes the approach:

Afy = sp (K(fp) =) = fpp =16+ 5 (K(f) - fpg)
where s, € R is a scalar. In order to avoid gamut expansion or
compression across the gray axis of the color space, s, should
be restricted to s,, € [0, 1]. With this constraint, the image at one
stage is a convex linear combination of the image at the previous
stage and a gray image, rewriting (8)

fp1 = (1= sp)fy + spK(f). 9)

In order to have a spatial variant algorithm, s,, should be a
scalar image s, : J — R. In analogy with the use of the syn-
thetic symbol F, we group all such images into the functional
space S, so 5, € S. Furthermore, in order to have an image
dependent algorithm, s, should be the result of the application
of an operator to the image itself, i.e., s, = S,(f,), where
Sy + F — &. In analogy with (1), the operator S, could be
defined in terms of G and (L,), but, for notational simplicity,
we simply refer to it as Sp,.

More than one spatial operator can be used, since different
ones can focus on different properties of the image (e.g., spatial
distribution, color, both spatial and color distribution or “higher
dimensions”). Thus, a sequence of spatial operators (Sg) can be
used simultaneously.

It is, therefore, useful to introduce the ¢ operator for com-
bining the results of IV spatial operators, ¢ : SN — S. With
this generalization, the complete formulation of the framework
for multiscale spatial GM is

for1 = (1 - ¢)f, + pK(f,) (10)
where, for the sake of clearity, with ¢, we actually mean
" N-1
b= ((sp &) ) . (11)

Every vector Af,(x,y) is directed towards the gray axis,
while the magnitude of the compression is decided by the
operators (S;}) 7]:7:_01 through ¢. The simple multiscale method
(1) reduces to conventional spatial invariant GM in the case
of trivial operators P = 1, Ly = I. Unfortunately, it depends
upon the choice of the operators S, and ¢ whether or not (10)
and (11) reduce to conventional spatial invariant GM. In the
next section, we show how to design the operator Sg to achieve
a magnitude of compression that is consistent with the goals of
GM [4].
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Fig. 5. Resulting color change to the pixels of the image in Fig. 1 when using
the proposed S 2 operator (12). The synthetic image and the resulting gamut-
mapped image are shown in the lower right corner.

B. Preserving Local Relationships Using Clipping-Driven
Compression: Design of Sg

As a first example on using this framework, we restrict our-
selves to one spatial operator Sg, taking ¢ = I (the identity
operator), and K (f) = C, where C € F is the constant image
C(z,y) = c, and ¢ € R? is the center of the gamut on the gray
axis. Like for the simple multiscale scheme (1), we compute
the magnitude of compression for every pixel by considering
the magnitude of the clipping vector for the low-pass-filtered
image, |Gei(Ly(£5)) (2, y) — Lp(£,)(w, )|, where | - | is the L?
norm in R3. This amount of compression can not be applied as
it is to all pixels, since it may lead to over compression similar
to the case of pixel b in Fig. 2. Instead, a relative compression
can be applied for all pixels:2

So(fp) — |GC1 (Lp(fp))

— Ly ()]
|C_Lp(fp)| .

12)

Here, the numerator is the amount of compression needed for
the average pixel value from the low-pass-filtered image, and
the denominator is the maximum possible compression, i.e., the
distance from the average color to the center of the color space.
The values of Sg(fp) are in the range [0,1] due to the use of G.

Applying this method to the example of Fig. 1 (keeping (L)
as before), gives the result in Fig. 5. We see that the defined op-
erators S)(f,) and ¢ = I within the framework, simultaneously
solve the problems of hue shifts, hue changes and gamut expan-
sion. However, they still introduce some unwanted gamut com-
pression for the pixels a and c¢. Consequently, some haloing will
still be present in the resulting image. Running this algorithm on
the synthetic image of Fig. 3 gives (left) Fig. 6, and the corre-
sponding scan lines in Fig. 7. It can be noticed that the haloing
is still present, but achromatic. The next section presents the de-
sign of S} (f,) operator that, combined with SJ(f,,) and using an
appropriate ¢, reduces the haloing effect.

C. Avoiding Unwanted Compression: Design of S;

The use of Sg guarantees a proper amount of compression
for colors that contribute significantly to the mean value; for

2Here, we actually introduce a new function | - | : 7 — & defined by the L?
norm | - | : R® — R, such that for f € F, |f|(x,y) = |[f(x,y)]|.
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Fig. 6. Synthetic image from Fig. 3 gamut mapped to the ISO uncoated gamut using the proposed framework with the (left) Sg operator and using the (right)

(S0, S} ) operators.
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128 192 256 320 384 448 512
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0 64

Fig. 7. Same scan lines as in Fig. 4 for the image on the left hand side of Fig. 6.

these colors the direction of mapping is similar to the one of the
clipping vector applied to the average color. However, since Sg
does not take into account the direction of mapping, the com-
pression magnitudes of pixels a and c of Fig. 5 are still signifi-
cant. Even though the direction of mapping is correct, the com-
pression of a and ¢ is somewhat undesired. However, for pixel
b in the same figure, some compression is relevant in order to
keep good local relationships with respect to similar colors, and
avoiding reduced rendering of details. Thus, we need a way to
distinguish between colors that should be compressed using the
scalar operator SS and others that should be treated differently.

The angle between the pixel value of the image at level
p, f,(z,y), and the corresponding low-pass-filtered one,
L,(f,(z,y)), taken from the center of the gamut ¢, can be used
to influence the magnitude of compression. This angle is given
by, : F =S

0,(£,)(,y) = arccos ((fz)(z,y) —¢) - (L) (w,y) - c))

| (2,y) = ¢l [Lp(£,) (2, y) — <l
13)
where the dot denotes the Euclidean inner product in R®.

150/
180

210\

270

Fig. 8. Polar plot of the relevance operator R taken as a function of the angle
6 for the following values of o x: 7 /40, /20, 7/10, 7 /5, 7/2, and 7. The
curve foror =« / 20 is drawn as a solid line.

To link the angular value to the compression magnitude, we
build a smooth relevance operator IR,,. It should be highest (e.g.,
equal to 1) for § = 0°, and decrease towards zero when the
absolute value of the angle increases. This can be obtained using
the Gaussian function; thus, the relevance operator R, : 7 —
S, is defined by

_ (Bp(fp)(,9))°

14
o7 (14)

Rp (fp)(% y) = exp

While the relevance is always equal to 1 for § = 0°, op
should be tuned to give zero relevance at the appropriate
“cutoff” angle. To our knowledge, no theoretical assumptions
can indicate the optimal “cutoff” angle. Fig. 8 shows polar plots
for different shapes of the relevance operator varying og.

Preliminary tests showed that 0 = 7 /20 (solid line in Fig. 8)
is consistent with the aim of S; operator, and gives the ex-
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pected desired benefits to the GMA. It is important to discuss its
meaning and the behavior of the GMA varying o . For the sake
of completeness and clarity, Section VI-A has been devoted to
the discussion of this parameter, avoiding a distracting discus-
sion on o i here.

The relevance operator I?;, could be directly used as S;. How-
ever, since ¢, is directly dependent on f,, R,(f,) will have
high-frequency content. This implies that some high-frequency
information is injected from higher to lower scales, thus in-
fringing on the principles of the scale-space theory. It is, there-
fore, necessary, and reasonable,3 to perform a low-pass filter
on R,(f,) before using it into the framework, thus defining
S; : F — Sby

S;(fp) =L, (Rp(fp>> . (15)

D. Combining SB and S; : Design of ¢

We defined the two operators Sg and S ; , the first giving us the
magnitude of the GM, and the second giving us the relevance of
the magnitude prompted by the first one. A reasonable way to
compose these two operators is by multiplication, thus devising
the ¢ operator as follows:

¢ (Sp(£5), S,(£,)) = Sp(£:) S, (£,).

With this choice, we get that ¢(S2(f,), S3(f,)) < Sp(f,)
pixelwise, so ¢ can be seen as a conservative proposal, since the
magnitude of GM (i.e., 52) is always decreased (or at least left
unchanged).

This is not the only way to combine different S;, operators.
As an example, an alternative combination of Sg and S; can
be designed as ¢(Sy(f,), Sp(f,)) = 1 — (1 — S)(f,))(1 —
S}(f,)). This choice can be considered more “aggressive” since
P(S)(£,), S5(£,)) > Sp(f,) pixelwise. This example clarifies
the importance of ¢ operator and the modularity of the frame-
work. When the ¢ operator (16) is chosen, this method reduces
to conventional spatial invariant GM for the trivial case of one
level, Ly = I.

From now on, when using the term proposed GMA, we refer
to the one based on the framework (10), with (S ;?)711\7:_01 operators
(N = 2) given by (12) and (15) with og = 7/20 and the ¢
operator (16). The proposed GMA is summarized in Table II.

The application of the proposed GMA to the example of Fig. 1
gives the result in Fig. 9. We see that the problem of unwanted
gamut compression for the pixels a and ¢ has been reduced
thanks to S} (f,). The result for running this algorithm on the
synthetic image of Fig. 3 is shown in (right) Fig. 6, and the cor-
responding scan lines are shown in Fig. 10.

(16)

VI. DISCUSSION OF THE PROPOSED METHOD

This section discusses the only parameter of the proposed al-
gorithm, (o g), the computational complexity of the algorithm
and the drawbacks inherited from spatially invariant GMAs.

3Preliminary tests show that high-frequency re-injection results in ringing ef-
fect.
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TABLE II
SUMMARY OF THE PROPOSED GMA

for1 = (1 - Sg(fp)sz%(fp))fp + Sg(fp)szlw (fp)C

|Gcl(LP(fp)) _ Lp(fp)|
|C — Ly(fp)]

Sg(fp) =

S; (fp) =Ly (Rp(fp))

Ry(£,)(z,y) = exp (,M)

2
20%

or =7/20

— arccos [(E@9) = ©) - (Ly(f,) (z,9) —©)
Op(fp)(z,y) = ( £, (2, v) — c||Lp(£p) (2, ) — | )

Ly(f) = gyp2-p xf

1 22 +y2
gop(ﬂ%y) = Fag exp (* 20127

P = Tlog, (max(W, H))] - 2

CIELAB b*

mapped

—40 | : . s
-60 -20 0 20 40 60 80
CIELAB a*

-40

Fig. 9. Resulting color change to the pixels of the image in Fig. 1 when using
the proposed ¢ (16), S 2 (12), and S ; (15) operators. The synthetic image and
the resulting gamut-mapped image are shown in the lower right corner.

A. Algorithm Behavior Varying or

The design of the relevance operator (14) and the choice of
o can affect the algorithm behavior. Moreover, the Gaussian
shape of the relevance operator could be substituted by alterna-
tive smooth functions. Alternatives must be non-negative mono-
tonically decreasing functions of |6| giving 1 for § = 0°.

Regarding the tuning of opg, it can be noticed that
S)(f,)(xz,y) — 1 when og — oo, thus reducing the al-
gorithm to the one proposed in Section V-B (i.e., without
the 511, and with ¢ = [ operators). When o — 0, and the
low-pass filtering is omitted [see (15)], the algorithm turns into
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Fig. 10. Same scan lines as in Fig. 4 for the image on the right hand side of
Fig. 6.
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Fig. 11. Same scan lines as in Fig. 4 for the image on the right hand side of
Fig. 6 for the following values of or: 7/20, 7/40, /20, /10, n /5, /2,
and 7.

conventional spatial invariant GM, regardless of the choice of
P and (L,) (only colors that produce § = 0 are compressed).
In this case, the use of the low-pass filter L, (15) inhibits that
the algorithm becomes spatially invariant.

Summarizing, or € (0, 00) controls the balance between a
clipping-driven global compression (¢g — o0) and a quasi-
spatially-invariant gamut clipping (g — 0). Since S; (f,) has
been devised to avoid unwanted compression with the goal of
reducing halos, an intermediate value of o i should be used.

Fig. 11 shows the behavior of the proposed GMA when
varying o r. Decreasing the o value reduces the halos.

B. Computational Cost and Implementation

The proposed method has a computational complexity equal
to O(N log? N) with N the number of pixel in the input image.
In fact, we must perform 2log N'/2 = log N discrete Fourier
transforms [two for each scale; see (7) for details]. Using the
fast Fourier transform, that is N log N, we have to perform
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N log2 N operations. Computing the operators requires /N op-
erations for every scale; thus, the added operations with respect
of a standard multiscale GMA, is N log N. These facts give
that the proposed algorithm is O(N log® N); thus, we do not
increase the computational cost with respect to a standard mul-
tiscale GMA.

Regarding the implementation, we extensively used different
look up tables to implement in a fast way all the spatially in-
variant gamut mapping involved in the proposed multiscale ap-
proach. The line-gamut surface intersection can be quite expen-
sive. Using these LUTs, we reduce heavily the number of oper-
ations of this step obtaining reasonable computational times.

C. Drawbacks Inherited From Spatially Invariant GMAs

In the previous sections, we omitted to discuss closely the
mapping of L*. The main reason is that mapping of L* is com-
monly treated separately by the majority of works. Problems
with mapping of L* are usually inherited from the spatially in-
variant GMAs used in the multilevel approach. To better discuss
the problem, in this section, we only consider spatially invariant
GMAs.

To treat L*, we have mainly three different standard ap-
proaches: clipping toward the center of the destination gamut,
compression of L* independent of «* and b*, compres-
sion toward the center of the destination gamut [or toward
(L*,a*,b*) = (100,0,0)]. All of these three possibilities have
advantages and drawbacks. A simple image that can help to
highlight drawbacks is a gradient of increasing L* (starting
from, e.g., L* = 10 to 20) while decreasing chroma C7,
(starting from, e.g., C¥, = 60 to 20).

If the GMA performs clipping toward the center of the des-
tination gamut, usually it inverts the L* gradient but keeps the
relationships between chroma values. This is unacceptable since
L* information is more perceptually important than chroma.

If the GMA performs compression of L* independent of a*
and b* (followed by clipping toward the gray axis), it guaran-
tees that the L* relationships are maintained, but, because of
the gamut shape, the chroma relationships can be inverted. Even
though this approach is better than the previous one, we can
have a loss of fine details due to the compression of L*. This
is a well-known consequence of compression techniques.

Finally, if the GMA performs a global compression, both L*
and C7, relationships are preserved, and no inversion of gradi-
ents is induced. Unfortunately, it is well known that compres-
sion causes an important loss of contrast and loss of fine details.
For these reasons, the use of a spatially invariant compression
method alone is more a theoretical than a practical solution.

For the sake of completeness, we recall that the SGCK
method [30] proposes a technique that tries to preserve L*
relationship by taking into account both hue and chroma.

Summarizing, the preservation of L* relationships requires a
tradeoff solution involving at least the treating of chroma C;
and the detail preservation. This tradeoff solution should be
searched by using the appropriate spatially invariant GM into
a multiscale approach. Section VIII-C suggests some future ex-
tensions of the algorithm to improve the treatment of L*.
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Fig. 12. Original images used in the GM test shown in Fig. 13. The girl an camera images were provided by the photographer Ole Jakob Bge Skattum, and the

cat and ski images by the CIE TCS8-03.

VII. RESULTS ON REAL IMAGES

Fig. 13 shows the result of running the proposed GMA on the
real images shown in Fig. 12. Four images with quite different
properties have been chosen. The Girl image is a typical por-
trait with a flat background and not too saturated colors. This
kind of images is often quite well treated by spatially invariant
GMAs, whereas spatial algorithms can have problems with the
edge between the hair and the background, resulting in halos.
The Camera image contains a lot of details in the dark regions
that are often strongly attenuated or lost with spatially invariant
GMAs, and it is, thus, an example of an image that should be
well off with spatially variant GM. The Ski image is also very
detailed, and has a lot of information in the chromaticity dimen-
sion. We added this image following the guidelines of the CIE
[30]. The Cat image is a typical computer graphics image that
has strong saturated colors in almost flat areas. Note that there
are some halos present in the original. Like the Girl image, this
kind of images is often well treated by spatially invariant GMAs.

The pure multilevel scheme (1) gives the strongest rendering
of details for all of the images at the cost of introducing
strong halos and hue shifts. This is particularly visible in the
Girl image, see, e.g., the green halo between hair and neck,
and the light halo around the head in the closeups shown in
Fig. 14. These halos are strongly attenuated by the proposed
algorithm, while still giving a good rendering of detail. The
effects of over compression and hue shifts caused by the simple
multilevel scheme is particularly evident in the red badge in
the Camera image, shown in the closeup in Fig. 15. The hue
shift is completely removed by the proposed algorithm, and the
over-compression is strongly attenuated.

VIII. FURTHER EXTENSIONS WITHIN
THE PROPOSED FRAMEWORK

The proposed framework exhibits a good modularity. This
section shows some further extensions to the proposed GMA,
providing also some citations of possible previous research that
can be fused into the framework.

A. Other Color Spaces

As stated in Section V, our framework requires that the color
space used in the gamut processing should have some impor-
tant properties. The CIELAB color space only partially fulfils
the requirements. The blue region of CIELAB color space is
particularly inhomogeneous [31]. Other color spaces, e.g., the
Munsell color space, can perform better than CIELAB with re-
spect to perceptual uniformity and isotropy and have been sug-
gested as an alternative [32]. The Coloroid System has been pro-
posed for a spatially invariant method by Neumann and Neu-
mann [33] taking advantages of the fact that, quoting their ar-
ticle, “the constant hue planes of the Coloroid system are per-
ceptually perfectly uniform.” However, many other color spaces
can be used within the proposed framework; some examples
being, e.g., OSA, UCS, Ljg, and CIECAMO02.

B. Other Scale Spaces

We have chosen to use Gaussian kernels to construct the
scale-space representation of the image. This is a robust and not
too computationally expensive way to obtain the scale space.
However, the problem of haloing that has been partly solved
by the application of the S; operator mainly results from this
choice.

Scale-space representations that would reduce the haloing
problem could be obtained using nonlinear methods such as bi-
lateral filtering [15] or anisotropic diffusion [34]. Confirming
this direction of development, the former method has already
been implemented by Zolliker [14], reducing the haloing effect.
With such scale spaces, there might not be the need of an 5’;
operator, at the cost of a higher computational complexity.

However, it must be taken into account that the operators SS
and, in particular, S; have been specifically designed for the
Gaussian scale-space representation. For other types of scale
spaces to be successfully applied in the framework, the S op-
erators must be redesigned accordingly.

C. Design of G and K(f) for Preserving L* Relationship

Even though the selection and/or design of G and K(f) is
not the main topic of the paper, we already implicitly defined
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Fig. 13. Results running different GMAs on real images from Fig. 12 for gamut mapping to the ISO uncoated gamut. The first column presents the results of the
simple multilevel scheme (1), the second presents the results using the proposed framework (10) with the S9 operator (12), the third presents the results of the

proposed algorithm using the ¢ (16), Sg (12), and S ; (15) operators.

the pair (G, C) in the previous sections. We briefly refer to
this approach as foward center.

For the sake of completeness and to show the generality of
the proposed framework, we now add two new different pairs
(G, K(f)) with the goal to preserve the L* relationships while
trying to avoid the main drawbacks discussed in Section VI-C.

1) Sequential Mapping: The first proposal takes inspira-
tion from a standard way to treat L*. We first gamut map
the lightness and then the chromaticity. A lightness image
go = A(fy) is obtained by the projection A : F — F,
A(f)(z,y) = fr-(z,y)er, fr-(x,y) being the lightness
component of f(x,y). Thus, the mapping of lightness (with
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Fig. 15. Detail of the camera image; original, simple multilevel scheme (1) and the proposed algorithm of Table II.

P the number of scales) is obtained using (10) on the image
go using the pair (G, C). Denoting by gp the result of the
multiscale lightness mapping, we substitute the original light-
ness with the gamut-mapped one obtaining fo =fo — go +gp.
This full color, lightness compressed image, is then used as
input image for the proposed multiscale GMA using the pair
(Ga,aqr), A(f)), i.e., mapping towards the gray axis along lines
of constant hue and lightness.

2) Toward Compressed Gray Axis: We also propose a novel
alternative method for lightness mapping, by incorporating it
into a unique multiscale computation, without the necessity of
a sequential mapping. The main idea is to compute the direc-
tion of mapping according to go. In this case, it is possible
to map the lightness toward the compressed lightness on the
gray axis. Denoting by M, and m, the maximum and min-
imum lightness on the gray axis of the destination gamut re-
spectively, this can be achieved by the projection K : F — F,
K(f)(z,y) = (mg + fr-(z,y)(My —my)/100)er. With this
projection, the suggested approach is implemented using the
pair (GCI,K(f)a K(f))

IX. CONCLUSION

We presented a unified viewpoint for analyzing a class of the
latest generation multiscale spatially variant gamut mapping al-
gorithms. This viewpoint encompass at least two of the more im-
portant gamut mapping algorithms. Analyzing the framework,
we highlighted advantages and drawbacks of multiscale algo-
rithms. We showed the main theoretical and practical causes of
these drawbacks and then we built up a novel multiscale frame-
work for spatial gamut mapping. Within this framework, we
designed specific operators and functions to solve or strongly
reduce these drawbacks. The computational complexity of the
proposed gamut mapping algorithm is the same as of a standard
multiscale approach. Results on both paradigmatic challenging
synthetic images and on real images are presented and show that

the proposed framework can be a robust starting point for new
spatially variant gamut mapping algorithms.
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