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Abstract We distinguish two families of SGMAs which follow differ-

A general framework for adaptive gamut mapping is pre- ent approaches: the first uses iterative optimization jtléssec-
sented in which a wide range of published spatial gamut map- ond reinserts high-frequency content in clipped imagesoto-c
ping algorithms fit. Two new spatial and color adaptive gamut pensate for the loss of details caused by clipping.

mapping algorithms are then introduced. Based on spatildrco The optimization family includes algorithms proposed by
bilateral filtering, they take into account the color profies of Nakauchi et al. [7], McCann [4], and Kimmel et al. [8]. Using
the neighborhood of each pixel. Their goal is to preservé o models of perception of the Human Visual System (HVS), the al
color values of the pixels and their relations between nedgh. gorithms minimize the perceived differences between tiggral
Results of psychophysical experiments confirm the goodrperf and the candidate reproduction by locally modifying thedian
mance of the proposed algorithms. date. In these optimization processes, the main difficudtyoi
define an appropriate criterion to optimize, using a valictpp-
Introduction tual model. Another issue is the lengthy computing time, imgk

The fundamental role of a Gamut Mapping Algorithm these algorithms difficult to use in an industrial context.
(GMA) is to manage the color gamut changes between an ofigina Algorithms of the second family are usually sufficientlytfas
image and its reproduction via a given technology (pringtph to be implemented in an industrial color flow. They have a less
graph, electronic display,...). These changes correspmsrbape ambitious motivation: to limit or compensate for the losdet
differences and size reduction of the gamut causing a logs of  tails caused by clipping algorithms. Clipping yields goedults

formation. Ideally, a GMA should optimize the reproduction in terms of saturation but tend to degrade image detailstin sa
taking into account the color and spatial distribution o trig- rated areas. The projection might fail because it projelttsoa
inal image, such that the reproduction is perceived as airag reproducible colors lying on the line of the projecting diien
possible to the original. onto the same point on the gamut boundary. Ifin a local asa, s

In the quest for an optimal reproduction, an impressive eral neighboring pixels lie on a same line of projection bithw
number of GMAs have been proposed in the literature. Morovic distinguishable colors, the local variations that form gpatial
and Luo have made an exhaustive survey in [1]. The ICC color content will be erased (see Fig.1). Similarly, if pixels ifoaal
management flow is based on the first generation, non-adaptiv
point-wise GMAs [2]. Morovic and Luo classified these classi
GMAs into two categories: gamut clipping and gamut com-
pression. Gamut clipping algorithms project color lyingside
the output gamut onto its boundary. They usually preserve
saturation but clip image details and introduce clippintifasts.
Gamut compression algorithms compress the input gamut onto
the output gamut and are better at preserving details bdttten
reduce saturation. The next step has been to investigaptiaela
algorithms with the selection of an appropriate GMA depegdi
on the image type or directly on the image gamut instead of the Figure 1. HPMInAE [9] projects all colors lying outside the gamut and on the
input device gamut [3]. To further improve adaptive GMAs, line of the projecting direction onto the same point on the gamut boundary,
it has been advocated that preservation of the spatiallglétai  erasing local image variations.
an image is a very important issue for perceptual qualityp]4,

GMAs adaptive to the spatial content of the image, i.e. @pati neighborhood lie on nearby projection lines, they will bepmed
Gamut Mapping Algorithms (SGMAs), have been introduced. to nearby points on the gamut hull, and the local spatiaktians
These new algorithms try to balance both color accuracy andmay be severely diminished. To prevent these degradatibiss,

HPMinAE clipping Tour

preservation of details, by acting locally to generate aaeypc- family of SGMAs proposes solutions that can be divided in two
tion perceived as close to the original. There are a limitediver groups.

of publications regarding this recent and important dguelent In the first group XSGM by Balasubramanian et al. [10]
that was first introduced by Meyer and Barth in 1989 [6]. gamut maps the original image using a direction of projec-

tion that emphasizes preservation of chroma over luminance



The parts of the original image that were clipped are higbspa
filtered and added to the gamut mapped image. The resulting su
is again gamut mapped using a direction of projection that em
phasizes preservation of luminance over chroma. Prevyiaasi-
ducted psycho-physical evaluations showed that XSGM obtai
good scores but suffers from the presence of halos [11]. Rkgce
Zolliker and Simon proposed to improve XSGM by using bilater
filtering [12]. The use of such filter eliminates the halosduoed

in XSGM by the gaussian filters.

In the second group,
in 1995 [13] and recently Morovic and Wang [14] proposed in
MSGM4 to first decompose the image in frequency bands. The
low-pass band is gamut mapped then successive clippingeare
formed during the reconstruction. Results of such an agproa

depend both on the algorithm used in the image decomposition

and on the GMAs successively applied.

In both groups, problems may arise when adding high-pass
content to the gamut mapped image: artifacts such as hatbs an
color shifts might be introduced, except for the most recemt
sion of XSGM [12].

Based on the knowledge that can be found in the literature
and on our own experience, we have listed conditions that op-
timal GMAs need to fulfill. First, GMAs need to fully preserve
hue, then preserve lightness and chroma as much as possle.
ond, they need to preserve spatial information: the colations
between neighboring pixels must be preserved, as does the ba
ance between the frequency bands. Third, they need to aweid t
introduction of artifacts such as halos, hue shift or pazation.

In this paper we first introduce a mathematical framework
for adaptive gamut mapping algorithms and show that exjstln
gorithms can be considered as special cases of this frarkewor
Two new spatially adaptive GMAs are then introduced withiis t
framework. Finally we proceed to the psychophysical evana
of our algorithms by conducting a ranking experiment andalem
strate their advantages.
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Figure 2. Results of different gamut mapping strategies in a sce-

nario where the colors of a pixel and its neighbors lie in a hue plane,
outside the destination gamut. a) Linear compression: considerable de-
saturation, and good preservation of local variations, b) Clipping: maxi-
mal preservation of saturation, loss of all the local variations in the direc-
tion of projection, c) Adaptive Clipping: almost maximal preservation of
saturation, loss of half the local variations in the direction of projection,
d) Non-linear Adaptive Compression: small desaturation, local variations are
preserved but reduced in the direction of projection.

Mathematical framework for adaptive gamut
mapping algorithms
Locally adaptive GMAs often use both the color values of

the pixels and the values of their local surrounding. Msd&le

decomposition [15] is an adapted framework for such localgen
processing and has been used in SGMAs [6,14]. Let note the mul

tidimensional entities with bold characters. The simplastti-
scale decomposition is in two bands: the low-pass band aolor

agel|ow contains local means and is obtained by convolution of

Meyer and Barth in 1989 [6], Kasson the original imagd, with a blurring filter. The high-pass band

Ihigh contains local variations and can be obtained by subtigctin

the local meanq,, from I, or by dividinglin by l1ow-

Once the image is decomposed in two bands, several options
are availablel o, might be re-rendered, its lightness range might
be rescaled, and it might be gamut mapped (functiom Eq.1).

Ihigh might also be adjusted by a scaling factor, spatially fitlere
or modified by a more complex function (functiéh [16]. Fur-
thermore, the merging of the two adjusted bands can be adjust
(function f). The framework can then be described as follows:

f19(liow). k(I nigh)], 1)
€ Gamubest, 2

lout

lout

wherel oyt is the image resulting from the SGM&amupest iS

the destination gamut (see Fig.2),g andk are the adaptive map-
ping functions.f, g andk should be chosen such that the SGMA
preserves as much as possible the color value of each pidel an
the color relation between neighboring pixels.

Color value versus pixel-neighbors relations, a tradeoff

In the case of Hue-Preserving Minimu&E clipping [9],
lout = HPMINAE(lin), with 1, the original image andoy: the
gamut mapped image (see Fig.1). The level of local colomvari
tions A(ph, Put) between two neighboring pixeisand j of the
gamut mapped image is likely to be lower than the level ofrthei
local color variationsx(p}mpi‘n) in the original image. This can
lead to major perceived degradations in the details of tregam
To prevent these degradations, SGMAS need to maintain fhe di
tance between each pixel and its neighbors. To do so it might b
necessary to modify the color value of the mapped pixel or the
color value of its neighborhood, or both. A compromise needs
be found between the preservation of the color value of al pixe
and the preservation of the color relation with its neiglsbor

Special cases: existing algorithms

In this subsection, we show that existing algorithms can be
considered as special cases of the above framework:

In Meyer and Barth [6]]) 0w is Obtained by convolution of
lin with a gaussian filtelk is the identity functiong a linear scal-
ing function andf a non-linear chroma compression algorithm
followed by a hue and lightness preserving clipping:

®)

In MSGM4 [14], |, is decomposed in 4 bandsg,, is ob-
tained by convolution with a mean filter of each CAM9762, b
color channel [14] andlygry by subtracting oy from lijp. This
operation is repeated two times by substituting, to I, to ob-
tain Inigre andlphign. K is a linear compression using the ratio of
the reproduction medium and original medium lightness eang

lout = T[9(liow) + Ihigh]-



g is a sigmoidal compression on the lightnekof |y, fol-
lowed byHPMInAE, andf is clipping toward the 50% greypoint
(SCLIP) applied sequentially after each step of the recoasbn:

lout= f[f [f [g(l Iow) + k(l highl)] + k(l high2)] + k(l high3)]- (4)

In Kasson [13] the input imagh,, is also filtered, exploit-
ing known spatial-frequency characteristics of the HVSthis
case, f g and k are different fdr and c; h is preserved. f_
is a luminance-preserving clippingg. is a chroma-preserving
clipping followed by a chroma-dependent weighted sumis a
luminance-dependent scaling followed by a luminancegrtésg
clipping, k., gc andk; are the identity function:

Q)

In XSGM [10], there is no low-pass filtering prior to the ini-
tial gamut mapping andis applied directly td,. gis HPMInAE
clipping, emphasizing the preservation of chroma over hance.
Ihigh contains the parts clipped Igy | high = lin—9(lin), Kis a sim-
ple high-pass filtering df,gn. f is a clipping toward the point on
lightness axis with the luminance of the cusp (CUSP), eniphas
ing the preservation of luminance over chroma:

Lout = fL[GL (Iiow) + Lnign] 5 Cout = fc[Cin-(Lout/Lin)]-

lout = f[9(lin) +K(Ihigh)]- (6)

In Zolliker and Simon [12], Eq.6 is still validf is a clipping
GMA andg is any point-wise GMAK is a more elaborated full
color high-pass filtering: the local mean is obtained withteral
filtering (see Eq.6).

To illustrate the optimization approach, we observe simila
ity in Nakauchi et al. [7] with XSGM: there is again no low-gas
filtering prior tog; f andg areHPMInAE; |pigh contains the parts
clipped byg: Ihigh = lin —9(lin). Kis a convolution with contrast
sensitivity functions and produces the “Perceptual Déffee”:
PD = k(phigh)- In [7], successive clipping and updating lef:
occur until the decrease B falls under a given thresholgt

fl9(tin) +k(lin —9(tin))],
f{louti), PDgiyl, while APD > €.

)
®)
Notice that in all the described SGMAs, if a mapped pixel

of ligmw = 9(liow) lies on the gamut boundary, after the sum of
with K(Ihigh) the resulting pixel inl oyt might end up lying

| out(o)

loui+y) =

IIow

outsideGamupeg;, the destination gamut. Hence a second gamut

mapping by functiorf is needed.

In the following we propose two new SGMAs which follow
the framework as in Eq.1 whetgis a point-wise GMA,f andk
are locally adaptive functions.

Proposed spatial and color adaptive algo-
rithms

e Conversion of the original image to the CIELAB color space
using the absolute intent of the input ICC profilg;.

e Decomposition of the CIELAB image in two bands using
bilateral filtering 8F): 10w andl pigh.

e HPMInNAE clipping (g) of the low-pass banty:

o Adaptive merging { andk) of l;- andlhign: lout.

e Conversion to the CMYK encoding of the output printer us-
ing the relative colorimetric intent of its ICC profile.
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Diagram of proposed framework for SCACOMP and SCACLIP.
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Multiscale decomposition
Pixel-neighbors relation

To compare the values of the pixels with the values of their
local surrounding, we decompose the image in two bands. The
low-pass band,q,, contains local means. Note that degradation
by clipping mostly occurs in a neighborhood in which seversl
els have nearby color values (see Fig.1). Consequentlyetae r
tion between a pixel and its neighbors with similar valuesdse
to be carefully handled. Therefore we compute a weightedl loc
mean where each neighbor is given a weight, which is funafon
both the geometric distance and the colorimehifi, distance to
the central pixel. This mean is computed using a five-dinuaasi
bilateral filtering algorithm.

5D bilateral filtering in CIELAB space

5D Bilateral Filtering BF) in the CIELAB space, proposed
by Tomasi and Manduchi in [19], is a combined spatial do-
main and color range filtering. Léigr = BF(L), agr = BF(a),
bge = BF(b) denote the three channels of the filtered image.
TheLgr value of pixeli, Lk, can be obtained as follows (similar
expressions foage etbgp):

S [r(x'.x)) s(pl,pl) L]

9)

wherelj, is the original imager (_xi,xj) measures the geometric
closeness between the locatiotiof pixel i andx! of a nearby

Since it is not easy to determine the appropriate HVS model pixel j. s(p',p) measures the colorimetric similarity between the

for gamut mapping [4,17,18] and because optimization Faee
are too slow to be included in an industrial workflow, we prepo
in this section two new gamut mapping algorithms which beglon
to the second group of the second family. However, becagse th
process is fully spatially adaptive and aims at getting aimugd
reproduction, they also share properties with the first fian@ur
adaptive algorithms are described by Eq.1, the diagramgrBFi
and by the following process:

colors (', @, b') and (J, al, bl) of pixelsi andj.
In our implementationy (x',x!) ands(p',p!) are gaussian func-
tions of the euclidean distance between their arguments:

2, o(pl,pl) = e 1R

(10)

where the scale parametess and s play an essential role in
the behavior of the filter. Tomasi and Manduchi explore défe



values, and present black and white images processedoyith
3pixelsand s = 50AE, yet the size of the processed images are
not specified. The setting @, should depend on the image size
and the conditions of visualization. Zolliker and Simon][have
applied the filter in their algorithm witlw, = 4% of the image
diagonal andos = 20AE. They found that values of; in the
range of [2 - 5]% of the image diagonal aaggvalues in the range
of [10-25] AE show good performance. In our implementation,
we have set the values @ = 1% of the image diagonal and
os = 25AE (for images printed at 150 dpi, at the size [9-15] cm
by [12 - 20] cm, viewed at a distance of 60 cm).

Decomposition in two bands

—~

.
a6l -
T \

hin
I; converted to CIELCH

L J

Figure 4. Computation of the low-pass band Igy.

First, the original CIELAB image is converted to the polar
representation CIELCH, i.e. Lightness, chroma and hue ofo-c
pute the low-pass banldy,, we propose to filter only the two
channelsLj, and ci, of the original imageli,, using 5D bilat-
eral filtering as described above (Eq.9-10). Tigechannel is not
filtered, to keep the hue unaltered by our SGMA. Nevertheless
since the 5D bilateral filter involveAE,, distance, the hue will
be well taken into account in the filtering bf, andc;, channels.
The low-pass bantly is thus defined as:

liow = (L8F,C8F,hin), (11)
wherelLgg = BF(Lin) andcgr = BF(cin) (see Fig.4).

The high-pass baniggh is then calculated by taking the dif-
ference oflj, and the low-pass barlg,,:

Ihigh = lin — liow = (Lin — LBF,Cin — CaF,0). (12)

(o Lpr Lhigh
L
- m =
Cin CBF Chigh
Iin Tlow [high
Figure 5. Computation of the high-pass bands Lpigh and chigh of channels

Lin and c¢i,. The hue channel h is not filtered.

Clipping of the low-pass band

The first step of our adaptive algorithms is the gamut map-
ping of the low-pass band. The goal of this mapping is to puese
as much as possible the color of each pixel, leading to thefuse
g = HPMInAE resulting in the clipped images:

= HPMINAE (110y).- (13)

ITow
Note that thehue channel is left unaltered byiPMinAE:
how = Milow = hin. The next step is the adaptive mergingl gf;
andl pigh involving the functionsf andk.

Adaptive merging of the high-pass band

We aim to merge the mapped low-pass bapg with the
high-pass banthgn while preserving as much as possible the lo-
cal variations contained by,gh. We propose two locally adaptive
algorithms to map the high-pass content by taking into actihe
local 5D neighborhood defined by the bilateral filtering.

Discussion

According to the properties of the bilateral filtering (Eq.9
10), local spatial variations contained bygn present only low
color variations. Therefore, each pixel and its neighboesaore
likely to be projected to a same little area of the gamut bamnd
if f is a clipping GMA, resulting in a strong diminution of the
variations present ihyigh. To avoid this situationf andk need
to be locally adaptive functions with the following obje&s for
a pixelpoyt Of the resulting imagéoyt:

e Pout is as close as possible pg, of iy,

e the color variations ooyt With its neighbors are the closest
to the color variations gb;, with its neighbors,

e pPout € Gamubpest) [ (plane of constant huay, of pin).

Since the first two requirements might be antagonigtig; results
of a compromise. A weighted sum can be used here:

{

wherew € [0,1] is a weight.

Pout € (Gam_ubestmg)7
Pout = arg rp,m[wA(n Pin) + (1 —W)A(Phigh, (P — Pigw))]:

e If w=1, kbecomediPMInAE cliping.

e If w=0, only the color variations between the pixel and its
neighbors will be preserved, not the pixel value.

e Inintermediate cases €]0, 1], the result might be obtained
by an optimization algorithm.

Fast solutions can be deployed to maintain the computatiiome
at a reasonable level. A new tradeoff comes to light: contjmrta
time versus quality of the result.

In the next sections, we propose two alternative and fast alg
rithms that provide approximations of the best obtainaésiits.
They are based on the same framework: decomposition in two
bandsl high andl oy Using 5D bilateral filtering, followed by clip-
ping of the low-pass bant]o,. Then adaptive merging dfign
andlg,; using local adaptive implementation of the two families
of pointwise GMAs: compression and clipping.



Spatial and color adaptive compression (SCA-
COMP)

We propose an adaptive compression algorithm to preserve

the color variations between neighboring pixels contaibgd
Ihigh. The concept is to project each pixel lying outs{é@mupest
toward the center, more or less deeply inside the gamut démgen
on its neighbors.

First, Inigh is added toli; and the sum is mapped using
SCLIP:

I's = SCLIRl g5+ Ihigh)-

Then we compute the differentgs ;setbetweer s and the newly
constructed imagé 5 + I high):

(14)

|off5et:|8*(|m+|high)- (15)

At the given spatial positiox!, for each pixelj in the neigh-
borhood, we project the color vectp[!Jffset on the direction of
P iser If the result is greater than the nomipl;seed|, Pj is

taken into account and pushp’§e I s toward the 50% greypoint
of Gamubest (see Fig.6). Each neighbor’s contribution to the
shifting of pixeli is weighted byw,’3F defined by BF (see EQq.9):

___1(<.x)s(p',p))

i 16
"o > (00X Sp) o
j€ in
and:
Pout = (Piaz * Phigh) * Wenit Pof fset an
where:
i 1 péffsetpi)ffset
Wopie= Y Wie max ————>=,1), (18)
shift j€Tin ED<( Hp'offset”2 )

“" denotes the scalar product am@hm is superior or equal to 1.
Therefore the resulting color value lies in the gamut, betwne
gamut boundary and the 50% greypointGdmubest.

Spatial and color adaptive clipping (SCACLIP)

To maintain the content df,ign, we also explore the possi-
bility of setting the direction of the projection as a vat@&bfor
each pixel the optimal mapping direction will be chosen st th
the local variations are best maintained.

wherewé,: are the weights of the bilateral filter used in the de-

composition of the image (see Eq.16). '
“Then the direction of projection for whidh, is the closest
to Efjign is selected for the pixél

(1)
(22)

Pout fselec(l:’:o—\,\, + pihigh)7

select = arg np]ir(\E,ﬂ —Efignl), n€ {1,2,3}.

Because the process is scanning the image pixel by pixel,
some pixelg! of the neighborhood have been processed before.
For these pixelspr’“?Ln are replaced by resuls,; in the compu-

tation of El. Therefore, anterior decisions are taken into account
andl oyt depends on the processing order of the pixels.
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Figure 6. SCACOMP: pl;. (i=1) contributes to the shifting of (p:TW+ Phigh)
toward the 50 % greypoint, unlike pZ;¢se (=2)-

~ ™~

.

Ligthness

i i
P iowt P high

30%
grey

Gamut,,

SCACLIP

.

Figure 7. SCACLIP: (pio—w+ PLigh) is mapped toward 3 directions, the optimal
direction will be chosen so that the local variations are best maintained.

Psychophysical experiment

In this section, we present our evaluation of selected
SGMAs by a psychophysical experiment following the CIE’s
guidelines [9]. A total of 22 images were used in this experitn

To get faster results, the choice can be restricted to a set of; ~\ic and SKI as recommended by the CIE, along with 6 im-

directions. In our implementation, the mapping directioifl w
be chosen within directions proposed in published algorith
i.e. betweenf; = HPMInAE , f, = CUSP and § = SCLIP[1].
First, Ihigh is added td5; and the 3 mapping$,, n € {1,2,3},
are run (see Fig.7). Then for each mapping the diﬁereﬁ@ﬁn
between the result of the mapping ahg; is computed. This
difference can be regarded as the result of the mappihgpf
IWgh_n: fn(ligw =+ Thigh) = liow » N € {1,2,3} (19)

In Ihigh we compute the energﬂigh corresponding to the
weighted sum of the norms @tﬂ]igh for pixels j in the neighbor-
hood of the pixel, and similarly the energE@1 in eachlm_n:

[ ] j i_ j j
E;ﬂgh_ j; WgE thith ’ Er|1 - jg WgE Hpmnuv (20)

ages from the Kodak Photo CD Sample and 4 sRGB images from
the 1ISO 12640-2:2004 standard [20]. 8 images SCID-LAB from
the draft of the ISO 12640-3 converted to Adobe RGB 98 using
relative colorimetric intent, and 2 Adobe RGB 98 images (eou
tesy of Pr. Farup). These images were converted to CIELAB
using the absolute colorimetric intent of their profiles.| kle
images were then gamut mapped using 5 different GMAs. The
destination gamut was the gamut of an OCE TCS-500 printer us-
ing OCE Standard paper and the printer’s highest qualitynset
The resulting images were then converted from CIELAB to the
device CMYK using the relative colorimetric intent. In orde

get high resolution prints, the processed images wereggrion

an Epson Stylus Pro 7600 using Epson Photo Luster Paper-on for
mats [9-15] cm by [12-20] cm.

The following 2 GMAs and 3 SGMAs have been evaluated:



o HPMINAE, hue-angle preserving minimufyE}, clipping,

e SGCK, chroma-dependent sigmoidal lightness mapping and [1]
cusp knee scaling performed with the software ICC3D [21],

e Z-HPMINAE [12], implemented usingiPMInAE as the
pointwise GMA,

e SCACOMP, our adaptive compression algorithm,

e SCACLIP, our adaptive clipping algorithm.

(2]
(3]

[4]
In our rank order experiment the test panel was constituged b
female and 8 male. The observers were presented with ametere (5]
image on an EIZO ColorEdge CG221 display at a Color Temper- 6]
ature of 6500 Kelvins, along with 5 printed gamut-mapped can
didate in a viewing booth GretagMacBeth The Judge Il at a CT [7]
of 5000 Kelvins. The observers viewed simultaneously the-mo
itor and the printed images from a distance of approximaéély 8
cm. For each image, the observers were asked to arrangerthe ca
didates according to the decreasing quality of the reprimuc
with respect to the original reference image. It was suggest
to make their decision based on different parts of the im&ge,
evaluate the fidelity of the reproduction of both colors amd d
tails, and look for possible artifacts. Thus it is the accyraf
reproduction of the images which was compared, not the pleas

antness. Results in Fig.8 show that on average over the 22 im-[ll]

El
[10]

[12]

0 I [13]

[14]

o]

HPMINDE

SGCK Z-HPMINDE SCACLIP  SCACOMP

15
Figure 8.  Z-scores resulting of our ranking experiment, average over 22 [15]

images and 15 observers.
ages and 15 observers, SCACLIP obtains the best scoresyénll  [16]
by Z-HPMINAE, SCACOMP, SGCK and HPMIAE. On average
over the 22 images, 12 of the 15 observers ranked SCACLIP first 17)
two ranked Z-HPMIME first, and one ranked SCACOMP first.
When considering only the 10 Adobe RGB 98 images, the rank- [18]
ing order changes: SCACLIP is first, followed by SCACOMP,
Z-HPMINAE, SGCK and HPMIME. [19]
Conclusions

A framework for adaptive mapping has been introduced.
Within this framework, two new locally adaptive spatial gam (20]
mapping algorithms have been presented, SCACOMP and SCA-
CLIP, which offer a nice compromise between the presemaifo  [21]
the color values and the preservation of the color relateEwben
neighboring pixels. Psychophysical experiments show 3iaz4-
CLIP outperforms both pointwise GMAs and our implementatio
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